TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2057N

AM / FM IF + FM St DET (for digital tuning system)

TA2057N is the AM / FM IF + FM St DET system IC, which is designed for DTS radios.
This IC is included many functions and these can be used for digital tuning system with IF counter.

Features

- Suitable for combination with digital tuning system which has IF counter.
- One terminal type AM / FM IF count output (auto stop signal) for IF counter of digitl tuning system.
- Built-in mute circuit for IF count output.

Weight: 1.2g (typ.)

- Adjustable for IF count output sensitivity by external resistance of pin(2) (AM), and pin(3) (FM).
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM st DET vco circuit.
- Built-in AM local oscillator buffer output circuit.
- Built-in AM IF buffer output circuit for AM stereo.
- Operating supply voltage range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right): \mathrm{VCC}=3.5 \sim 14 \mathrm{~V}$
※Handle with care to prevent devices from deteriorations by static electricity.

Block Diagram

Terminal Explanation (terminal voltage shows typical value at $\mathrm{Ta}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, $\mathrm{SW}_{3}=$ off, $\mathrm{SW}_{9}=\mathrm{GND}$, and non-signal test circuit)
Pin
No. Characteristic

Pin No.	Characteristic	Internal Circuit	DC Voltage (V)	
			FM	AM
4	AM OSC		1.95	1.95
5	AM OSC out		5.0	4.75
6	V_{CC}	-	5.0	5.0
7	AGC		0.01	0.01
8	GND	-	0	0
9	IF out / REQ - IF count output terminal - IF count output / FM st DET mute circuit control terminal $\mathrm{V}_{9}=\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{on}$ $\mathrm{V}_{9}=\mathrm{open} \rightarrow \mathrm{off}$		-	-

Pin
No. Characteristic

Pin No.	Characteristic	Internal Circuit	DC Voltage (V)	
			FM	AM
16	LPF1 - LPF terminal for phase detector - Bias terminal for AM / FM switch circuit $\begin{aligned} & \mathrm{V}_{16}=\mathrm{GND} \rightarrow \mathrm{AM} \\ & \mathrm{~V}_{16}=\mathrm{open} \rightarrow \mathrm{FM} \end{aligned}$		3.6	0
17	MPX in		1.4	1.4
18	AM DET out - AM DET / IF out $\mathrm{V}_{2}=\mathrm{GND} \rightarrow \mathrm{AM}$ DET out $V_{2}=$ open \rightarrow FM IF out	(a) Low, (b) High : AM DET OUT (a) High, (b) Low : AM IF OUT	1.44	$\begin{gathered} 1.5 \\ (\text { at SW } \\ \text { Vstb1.3) } \end{gathered}$
19	FM DET out		1.2	1.5

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Characteristic	Internal Circuit	DC Voltage (V)	
			FM	AM
20	QUAD		1.1	1.5
21	AM IF in		1.95	1.95
22	Vstb		1.95	1.95
23	Mix out		5.0	5.0
24	FM IF in		1.95	1.95

Application Note

1. How to control the IF count output signal (pin(9) output)

		Tun LED	
	On	Off	
V_{9}	H	Come on	Non output
	Open	Non output	Non output

		Mute Circuit
V_{9}	H	On
	Open	Off

- Whether or not there is the IF count output signal (pin(9) output) is determined by the and of the pin(9) control voltage: V_{9} and tuning LED on / off switching.
In the condition of

$$
\begin{aligned}
& \text { V9: High (active high, VTH }=2 \mathrm{~V} \text { (type.)) } \\
& \text { Tun LED: On }\left(\mathrm{V}_{\text {in }} \geq \mathrm{V}_{\mathrm{L}}+2 \mathrm{~dB}\right. \text { (type.)) }
\end{aligned}
$$

The IF count output signal come out from the pin(9).

- The signal waveform is FMः Rectangular, AMः Differential wave, and the level is 500 mV p-p (typ.)
- Mute circuit is action by the pin(9) control voltage: V9 (at high) in matrix output circuit.

2. How to adjust the IF count output sensitivity

- The IF count output sensitivity (search sensitivity) can be adjusted by varying the IF amp. Gain for FM and varying the mixer gain for AM.
- However, this is only possible at the auto-tuning mode (external voltage supplied to pin(9) is at high level). The original gain returns while receiving a broadcast station (supplied voltage to pin(9) is at low level).
- The gain loss of FM IF amp. (typ.)

R_{3}	
0Ω	$10 \mathrm{k} \Omega$
-25 dB	0 dB

- The gain loss of AM mixer (typ.)

	R_{2}	
	0Ω	$10 \mathrm{k} \Omega$ (Note)
Det. Output mode	-29 dB	0 dB
IF amp. Output mode	-29 dB	0 dB

(Note): It is necessary to set up the value of R_{2} under $20 k \Omega$.
When the R_{2} is over $20 \mathrm{k} \Omega$, it is feared that the mode can not change.
3. How to control the AM IF output signal (pin(18) output)

		Pin(18) Output Signal
V_{2}	GND	AM DET out
	Vstb	AM IF out

4. AM local oscillator buffer output

- The output impedance of AM local oscillator buffer output pin (pin(5)) is 750Ω (typ.).
- It is possible to reduce the output level to add the resistance between the pin(5) and V_{CC} line.

The signal waveform is the rectangular wave, and the level is 500 mV p-p. (fosc $=1.45 \mathrm{MHz}$ (typ.))

- The higher local oscillation frequency (fOSC) to be, the lower buff output level to be owing to the load capacity. So, in the case that it is connected to other circuits, take care of the input capacity of these circuits and stray capacity of wire.

5. FM detector circuit

For the FM detector circuit, detector coil is able to use instead of ceramic discriminator.
Recommended circuit and recommended coil are as follows. In this case, please take care that $V_{\text {in }}$ (lim.) fall a little.

Test Frequency	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turns				Wire (mm ϕ)	REF.
			1-2	2-3	1-3	4-6		
10.7 MHz	100	100	-	-	12	-	0.12 UEW	Sumida electric Co., Itd. 2153-4095-189 or equivalent

6. FM / AM switch and forced monaural switch

- FM / AM switchover and stereo / forced monaural switchover are done by pin(16) and pin(15).
- FM / AM switch (pin(16))
V_{16} : Low (active low, $\mathrm{V}_{\mathrm{TH}}=1.0 \mathrm{~V}$ (typ.) $\rightarrow \mathrm{AM}$ V_{16} : Open $\rightarrow \mathrm{FM}$
- Stereo / forced monaural switch (pin(15))
V_{15} : Low (active low, $\mathrm{VTH}=1.0 \mathrm{~V}$ (typ.)

$\mathrm{V}_{15}:$ Open \rightarrow Stereo

Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Rating	Unit
Supply voltage	V_{CC}	14	V
LED current	$\mathrm{I}_{\mathrm{LED}}$	10	mA
LED voltage	$\mathrm{V}_{\text {LED }}$	14	V
Power dissipation	$\mathrm{P}_{\mathrm{D}}($ Note $)$	1200	mW
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-25 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

(Note): Derated above $25^{\circ} \mathrm{C}$ in the proportion of $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless Otherwise Specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc} 1}=5 \mathrm{~V}, \mathrm{SW}_{3}=\mathrm{off}, \mathrm{SW}_{9}=\mathrm{GND}, \mathrm{SW} 10=1$
FM IF: $\mathrm{f}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 22.5 \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$
$A M: f=1 \mathrm{MHz}, M O D=30 \%, f_{m}=1 \mathrm{kHz}$
FM St Det: $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

Characteristic		Symbol	Test Circuit	Test Condition	Min.	Typ.	Max.	Unit
Supply current		ICC (FM)	1	FM mode, $\mathrm{V}_{\text {in }}=0$	-	20	26	mA
		ICC (AM)	1	AM mode, $\mathrm{V}_{\text {in }}=0$	-	20	26	
$\begin{aligned} & \text { FM } \\ & \text { IF } \end{aligned}$	Input limiting voltage	$\mathrm{V}_{\text {in }}(\mathrm{lim})$	1	-3dB limiting point	38	43	48	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Recovered output voltage	VOD	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	70	100	140	mV rms
	Signal to noise ratio	S / N	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	70	-	dB
	Total harmonic distortion	THD	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	-	0.2	-	\%
	AM rejection ratio	AMR	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	50	-	dB
	LED on sensitivity	V_{L}	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	43	48	53	$\mathrm{dB} \mu \mathrm{V}$ EMF
	IF count output voltage	$\mathrm{V}_{\mathrm{IF}}(\mathrm{FM})$	1	$\begin{aligned} & S_{3}: ~ O n, \\ & V_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \text { EMF } \end{aligned}$	350	500	-	$m V_{p-p}$
	IF count output sensitivity	IF ${ }_{\text {sens }}$ (FM)	1	SW_{3} : On, $\mathrm{SW}_{1}: 0 \Omega$	-	73	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
				SW_{3} : On, $\mathrm{SW}_{1}: 5.1 \mathrm{k} \Omega$	-	62	-	
AM	Gain	GV	1	$\mathrm{V}_{\text {in }}=23 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$	35	70	105	mV rms
	Recovered output voltage	V_{OD}	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	70	100	140	mV rms
	Signal to noise ratio	S / N	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	45	-	dB
	Total harmonic distortion	THD	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	-	0.5	-	\%
	LED on sensitivity	VL	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	19	24	29	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Local OSC buff output voltage	Vosc (AM)	1	$\mathrm{f}_{\mathrm{OSC}}=1.45 \mathrm{MHz}$	350	500	-	$m V_{p-p}$
			1	$\mathrm{fOSC}=27 \mathrm{MHz}$	-	500	-	
	AM IF output voltage for AM stereo	$\mathrm{V}_{\text {IF }}$ (ST)	1	$\begin{aligned} & \text { SW9: Vstb, MOD }=0 \% \\ & V_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF, } \mathrm{SW}_{10}: 2 \end{aligned}$	800	1100	1400	$m V_{p-p}$
	IF count output voltage	$\mathrm{V}_{\mathrm{IF}}(\mathrm{AM})$	1	SW_{3} : On, $\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF	350	500	-	$m V_{p-p}$
	IF count output sensitivity	$\begin{aligned} & \text { IF }_{\text {sens }} \\ & (\mathrm{AM}) \end{aligned}$	1	SW_{3} : On, $\mathrm{SW}_{2}: 0 \Omega$	-	54	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
				SW_{3} : On, $\mathrm{SW}_{2}: 5.1 \mathrm{k} \Omega$	-	30	-	

Characteristic			Symbol	$\begin{aligned} & \hline \text { Test } \\ & \text { Cir- } \\ & \text { cuit } \end{aligned}$	Test Condition		Min.	Typ.	Max.	Unit	
$\begin{gathered} \text { FM } \\ \text { St } \\ \text { DET } \end{gathered}$	Max. Composite input voltage		$V_{\text {in max }}$ (stereo)	1	$\begin{aligned} & \mathrm{L}+\mathrm{R}=90 \%, \mathrm{P}=10 \% \\ & \mathrm{THD}=3 \%, \mathrm{SW}_{8} \rightarrow \text { LPF: On } \end{aligned}$		-	800	-	mV rms	
	Separation		Sep.	1	$\begin{aligned} & L+R \\ & =180 \mathrm{mV} V_{\mathrm{rms}} \\ & \mathrm{P}=20 \mathrm{mV} V_{\mathrm{rms}} \\ & \mathrm{SW} \mathrm{~W}_{8} \rightarrow \mathrm{LPF}: \text { On } \end{aligned}$	$\mathrm{fm}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	45	-	dB	
			$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$			35	45	-			
			$\mathrm{fm}_{\mathrm{m}}=10 \mathrm{kHz}$			-	45	-			
	Total harmonic distortion	Monaural		$\begin{gathered} \text { THD } \\ \text { (mono) } \end{gathered}$	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mV} \mathrm{V}_{\text {rms }}(\mathrm{mono})$		-	0.05	-	\%
		Stereo		$\begin{aligned} & \text { THD } \\ & \text { (st) } \end{aligned}$		$\begin{aligned} & \mathrm{L}+\mathrm{R}=180 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{P}=20 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{SW} \mathrm{~W}_{8} \rightarrow \mathrm{LPF}: \text { On } \end{aligned}$		-	0.05	-	
	Voltage gain		Gv (FM ST DET)	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mV} \mathrm{V}_{\text {rms }}(\mathrm{mono})$		-2	0	2	dB	
	Channel balance		C. B.	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mV} \mathrm{V}_{\text {rms }}$ (mono)		-2	0	2	dB	
	Stereo LED sensitivity	On	$\mathrm{V}_{\mathrm{L}}(\mathrm{ON})$	1	Pilot input		-	10	18	mV rms	
		Off	VL (OFF)				3	8	-		
	Stereo LED hystersis		V_{H}	1	To LED turn off from LED turn on		-	2	-	mV rms	
	Capture range		C. R.	1	$\mathrm{P}=20 \mathrm{mV} \mathrm{rms}$		-	± 1.3	-	\%	
	Signal to noise ratio		S/N	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mV}$ rms (mono)		-	78	-	dB	

Test Circuit1

Coil Data (test condition1)

Coil No.	f	L $(\mu \mathrm{H})$	C_{o} (pF)	Q_{0}	Wire (mmp)					Ref. (coil no.)
T_{1} AM OSC	796 kHz	288	-	115	13	73	-	-2	$1-3$	$4-6$

(S): Sumida electric co., Itd.
(T): Toko co., Itd.
(M): Mitsumi electric co., Itd.

Test Circuit2

Coil Data (test circuit 2)

Coil No.	f	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turn				Wire (mm $)$	Ref. (coil no.)
					1-2	2-3	1-3	4-6		
T AM OSC	7.96 MHz	1.4	-	84	1	6	7	-	0.08 UEW	(T) 7PL-1344Y

(T): Toko co., Itd.

T : AM OSC

Package Dimensions

Weight: 1.2g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

